Beatrice M. Filippi, Mona A. Abraham, Pamuditha N. Silva, Mozhgan Rasti, Mary P. LaPierre, Paige V. Bauer, Jonathan V. Rocheleau, Tony K.T. Lam
Type 2 diabetes is a condition where the body does not produce enough, or is resistant to, insulin. In this study, the authors investigated the role mitochondrial dynamics plays in insulin resistance and glucose regulation. As well as its clinical consequences, this study offers to shed light on the relationship between glucose homeostasis and mitochondrial functionality.
In healthy rodents, the hypothalamus and dorsal vagal complex (DVC) regulate glucose homeostasis in the liver (which is where excess glucose is stored). However, after a high fat diet (HFD) as short as 3 days, this regulation is disrupted. This link between the DVC and high-fat feeding has been poorly understood.
The authors found that, after a HFD, DVC neuronal cells in rats had a higher density of mitochondria, and these mitochondria were less elongated, shorter and less branched.
The authors tested the effect of providing the 3-day HFD rats with an infusion of MDIVI-1, which is an inhibitor of the mitochondrial fission factor Drp-1 (by blocking its translocation from the cytosol into the mitochondria). The authors found that, upon infusion, mitochondrial morphology was restored to wild-type levels, the glucose infusion rate increased to normal levels, as well as the glucose production rate decreasing to normal levels. This was confirmed through molecular inhibition of Drp-1 via adenoviral-mediated inhibition. Furthermore, inducing overexpression of Drp-1 in the DVC of rats which were fed normally induced insulin resistance and recapitulated the effects of HFD.
The authors found that endoplasmic reticulum (ER) stress was necessary and sufficient to induce DVC-mediated insulin resistance, and that ER stress was a consequence of mitochondrial fission.
----------------------------
Thoughts: Are these associations still observed on a long-term high-fat diet, rather than a 3-day alteration to diet?